2017년 1월 31일 화요일

2017년 1월 8일 일요일

0914 도산 플래그십 스토어










설계: 조성익(홍익대학교/TRU 건축사사무소) + 이호 
설계담당: 최제일, 박준호, 윤경옥, 주재영, 오기원, 김정윤 
실시설계: 건축사사무소 유에이디 
인테리어: 건축집단 MA 
위치: 서울시 강남구 도산대로45길 15 
용도: 근린생활시설 
대지면적: 555.6m2 
건축면적: 328.98m2
연면적: 2,376.7m2 
규모: 지상 4층, 지하 5층 
주차: 19대 
건폐율: 59.21% 
용적률: 148.99% 
구조: 철근콘크리트조 
외부마감: 라임스톤, 벽돌 
구조설계: 오푸스펄 
시공: 기로건설 
기계・전기설계: 건일엠이씨 
설계기간: 2012. 12. ~ 2014. 2. 
시공기간: 2014. 3. ~ 2015. 10. 
건축주: 시몬느

자료제공 0914, TRU 건축사사무소 | 사진 TRU 건축사사무소(별도표기 외) 

창호 외부하단 빗물받이

창호와 가장 관련이 깊어 창호의 분류에 넣는다.

"13-01. 물끊기 기준" 글에서도 언급을 하였지만, 창호 하부의 물처리는 무엇보다 중요하다.

특히 외단열미장마감에서 이 빗물처리가 제대로 되지 않을 경우 외벽의 오염은 기본이고, 누수로 인한 각종 심각한 하자에 직면하게 된다. 
단열성능의 하락은 물론이고, 건식구조일 경우 구조체의 손상까지 이어질 수 밖에 없기 때문에 이 창호하단의 물처리는 특별히 신중히 기준을 따라야 한다.

빗물처리를 하는 방법은 여러가지가 있을 수 있으나, 외단열미장마감공법에서 가장 표준적 성격을 갖는 알루미늄판과 사이드캡을 이용한 빗물처리를 다룬다.

독일에서 외장재를 처리하는 디테일의 공통점이 있는데, 웬만하면 실란트를 사용하지 않고 모든 디테일을 해결하는 것이다. 언젠가는 외벽의 오픈조인트에 대해서도 다루겠지만, 거의 모든 하자처리를 코킹으로 해결하는 우리나라가 많이 참고해야할 부분이라고 보여진다.
실란트제는 시간이 흐르면 언젠가 오염이 되고, 여러가지 부가적인 이유로 결코 건축물의 소재와 수명을 같이 가져갈 수 없다.

이 글에서 다룰 창호의 빗물처리에서도 이 점을 고려하여 독일이 어떻게 창호의 빗물을 처리하고 있는지 보는 것이 하나의 감상포인트이기도 하다.

--------------------
창호의 빗물처리를 위한 각종 자재나 부위에 대한 우리나라 용어가 아직 정립되지 않고 있는데, 현장에서는 창호후레싱이라고 하기도 하고, 창호 빗물받이라고 하기도 한다.
영문의 표현은 Window outside sill 이라고 표현되고 있다. 이 글에서는 창호 빗물받이로 통일하기로 한다.

외단열미장마감공법에서는 이 창호빗물받이는 선택사항이 아니다. 이는 아래 사진을 보면 극명히 알 수 있는데, 그나마 공사가 잘 된 외단열미장마감공법으로 지어진 건물이 약 2년이 경과한 후의 창호 외부쪽의 사진이다.

DSC04486_s.jpg

면에도 크랙이 가 있으며,

DSC04488_s.jpg

모서리도 분명한 크랙이 보인다.

DSC04489_s.jpg

이를 실란트로 처리해 보아도 결국 위의 사진처럼 시간이 흐르면 벌어지게 마련이다.
문제는 이 균열로 우수가 스며들며, 스며든 우수는 단열재에 흡수가 되거나, 단열재 뒷면을 타고 아래층으로 흐르게 된다.
만약 겨울이 올 때까지 스며든 빗물이 증발되지 못하면 단열성능의 저하는 당연하고, 수분이 얼게되면서 이 균열을 더 크게 벌리게 된다. 결국 다음 여름 장마철까지 이 부분의 보수가 되지 않으면 더 많은 빗물이 흘러들어가게 되고, 역시나 그 해 겨울에 균열이 더 넓게 벌어지면서 돌이킬 수 없는 하자로 이어지고 만다.

그렇기 때문에 외단열미장마감공법에서 이 부분에 대한 처리는 무엇보다 매우 중요하다.

1. 창호에의 부착방법
빗물받이는 크게 밑판과 측면마개로 이루어져 있는데, 모두 알루미늄 재질이다.
이를 창호에 부착하는데는 먼저 창호회사에서 창호 하단에 별도의 프로파일을 끼워주어야 한다.
아래 그림처럼 우리나라에서 가끔 동판 등으로 빗물받이를 처리하는 것을 보면 모두 아래 그림과 같이 고정이 되고, 최종적으로 실란트로 마감을 하게 된다.

슬라이드1.JPG

시간이 흐르면 실란트는 결국 벌어지고, 이 부분으로의 방수는 기대하기 어렵게 된다.
이는 빗물받이를 제대로 하는 방법도 모르지만, 알더라도 창호프레임에서 도와주지 않으면 이 악순환은 끝나지 않고 반복될 것이다.

제대로된 고정방법은 아래 그림과 같다.

슬라이드2.JPG

위의 그림처럼 프레임 하단에 빗물받이 고정을 위한 부자재가 끼워져야 한다. 아래 사진은 부자재가 끼워진 창호프레임의 모습이다.

CAM00577_se.jpg

이 프레임하단에 덧붙혀진 부자재에 빗물받이 밑판이 고정되면 실란트없이도 빗물처리가 가능해 진다.
물론 물끊기가 되어 있더라도 강풍을 동반한 우수에 의해 틈새로 빗물이 들어갈 수 있으므로, 빗물받이와 프레임사이에는 방수팽창테잎이 들어가게 된다.

방수 팽창테잎은 아래 사진과 같이 시간이 지나면 스스로 부풀어 올라 틈을 가득 채우는 목적으로 사용되는 테잎이고, 우리나라에서도 쉽게 구할 수 있으며, 상단 메뉴의 "관련 자재정보"에 들어가면 판매회사를 알 수 있다.


R0019606_s.jpg

아래는 목재창호에 빗물받이가 고정된 단면 사진이다.

Baubeschlagzubehoer_Fensterbaenke___YF_001_99.jpg
<빗물받이와 목조 프레임의 결합위치, 출처:Gretsch-Unitas GmbH>


또한 아래와 같이 방수팽창테잎이 필요없도록 고무계열의 가스켓이 일체화된 제품도 있으나, 우리나라에는 아직 없다.


빗물받이_그림1.jpg
<최신 창호빗물받이 제품상세, 출처:R·B·B Aluminium Profiltechnik AG>


2. 측면마개의 설치

밑판이 고정되면 그 후에 측면 마개를 설치하게 된다.
이 측면마개도 역시 알루미늄으로 되어져 있으며, 밑판을 흐른 빗물이 측면으로 스며들지 않게 하기 위한 역할을 한다.

측면마개는 대게 아래와 같은 치수를 가지고 있다고 보면 무방하다.
측면마개.jpg
<빗물받이 밑판의 치수, 출처:R·B·B Aluminium Profiltechnik AG>

종류는 크게 아래와 같이 두종류가 있는데,

ㄷ 자 형은 외단열미장마감공법에 사용되며, 상부 폭은 아래 그림처럼 12~18mm 가 있으며 현장에서는 이 두께를 미리 파악하여야 한다. 

빗물받이_그림3.jpg
<ㄷ자 측면마개, 출처:R·B·B Aluminium Profiltechnik AG>


ㄴ 자는 목조건축물에서 사이딩마감 등을 할 때 사용된다.

빗물받이_그림4.jpg
<ㄴ자 측면마개, 출처:R·B·B Aluminium Profiltechnik AG>

아래 사진은 측면마개 만을 빼내어 확대해서 찍은 사진이다.

CAM00578_se.jpg

CAM00583_se.jpg

나름 상당히 여러가지를 고려하여 제작된 부품이다.

아래 사진은 측면마개까지 끼워진 전체 모습이다.

R0020029_se.jpg

물끊기 기준에도 동일한 그림이 있지만, 편의상 여기에도 올린다.

창호하단처리_물끊기.jpg
<창호하단 후레싱처리, 출처 : Brillux 카달로그>


3. 외단열미장마감공법에서의 설치 과정

패시브하우스에서 외단열미장마감공법에서 이 밑판과 측면마개를 설치하는 과정을 쉽게 쓰면 다음과 같다.

먼저 패시브하우스는 창호프레임을 단열재가 최소 30mm 이상 감싸도록 처리되어야 하기 때문에 이를 고려한 빗물받이 폭을 결정하는 것이 중요하다.

슬라이드4.JPG

단열재가 얼마만큼 프레임을 감싸게 될지가 도면상 결정되어져 있다면, 현장에서 실측을 통해 단열재의 끝단까지 길이를 고려하여 빗물받이 밑판의 폭을 결정하고, 설치되는게 첫번째 고려할 점이다.
아래 그림에서 점선 부분이 추후에 단열재가 채워질 부분이다.
또한 빗물받이 역시 외벽 최종마감선에서 최소 30mm 가 돌출되어야 하기 때문에 이 두가지 수치로 폭과 깊이가 정해진다.

슬라이드5.JPG

그 후에 측면마개를 끼우게 된다.
슬라이드6.JPG

그 후에 단열재 공정이 들어가면 완료가 되는데, 이 때 프레임과 빗물받이 밑판을 고정할 때 방수팽창테잎을 사용하였지만, 빗물받이 측면마개와 단열재 사이에도 역시 같은 방수팽창테잎을 사용해야 한다.

슬라이드7.JPG

테잎은 끊어짐이 없이 측면 안쪽(1)부터 시작하여 측면마개의 단열재 끝선(2)에서 옆을 타고 밑으로 내려가 반대편 단열재 끝 선(3)에서 다시 위로 올라와 안쪽 끝(4)에서 종료된다.
이를 도식화 한 것이 아래 그림이다.

창호물끊기.jpg

이 테잎을 붙힐 때 주의할 점은 테잎이 꺽이는 지점에서 테잎을 당겨서 붙히면 모서리가 부풀어 오르지 않게 된다. 

아래 사진은 잘못 붙힌 사진이다.
그림2.jpg
<잘못 부착된 사례, 출처:STO AG>


아래 사진과 같이 모서리는 조금 모아주는 느낌으로 붙혀야 한다.

그림3.jpg
<옳바르게 부착된 사례, 출처:STO AG>



단열재 표면에 외부 마감까지가 완료되면 작업이 끝나게 되며, 실란트의 노후를 걱정할 필요없이 매우 장기간 빗물의 누수는 염려하지 않아도 된다.

아래 사진은 빗물받이 설치가 잘못된 사례 사진이다.

아래 사진은 두가지 하자를 보여주고 있는데, 첫번째는 빗물받이의 폭을 잘못 계산하여 ㄷ자 상부에 단열재가 올라가지 않고, 노출되어져 있는 모습이다. 두번째 하자는 이질재의 만나는 곳이 모두 실란트로 마감처리가 된 점이다. 

DSC01185_se.jpg


아래 사진도 역시 이질재 만남 부분이 모두 실란트로 처리가 되었으며, 외벽마감과 빗물받이 측면의 만남도 썩 잘 처리된 것은 아니다.

DSC02529_se.jpg


아래 사진은 독일 여행시 찍은 사진인데, 독일에서도 역시 동일한 하자가 보인다. 


결국 건축은 사람이 하는 일임을 다시 깨닿게 한 모습이다.



그림4.jpg



아래 사진은 규정대로 잘 마감된 사례사진이다.
모든 주택이 이와 같이 완벽할 수는 없겠지만, 눈여겨 잘 봐두면 현장에서 큰 도움이 될 듯 하다.

R0019809_se.jpg

그림1.jpg

53201048_e6286c1af3.jpg
<특수한 형태의 빗물받이, 출처 : www.this-magazin.de>


설치 동영상을 보시면 잘 이해가 가시리라 생각한다.


자막을 만들어 놓았으니, 동영상 화면  우측 하단의 "캡션사용"을 클릭하시면 자막을 함께 보실 수 있다.

과거에 항상 궁금했던 것이 이 빗물받이이 측면 마개가 단열재에 끼어들어가는 틈을 어떻게 현장에서 만들어 내는가?... 였다.

동영상을 보면 이를 알 수 있는데.. 사포를 감은 사각막대로 이 틈을 갈아내어 만드는 것을 볼 수 있다.



만약 빗물받이가 매우 길 경우 이 사이를 이어주는 부자재도 존재한다. 아래와 같다.


eckverbinder.jpg

eckverbinder-Aussen2.jpg

Stoßverbinder.jpg

Stoßverbinder2.jpg

Stoßverbinder3.jpg
<빗물받이 연결재,  출처:R·B·B Aluminium Profiltechnik AG>
출처:한국패시브건축협회

2017년 1월 4일 수요일

3개월이면 뚝딱 모듈러 주택… 건설기준 때문에 대량공급 어려워

모듈러 주택이 건축안전기준에 맞추느라 당초 기대보다 공사비가 많이 드는 것으로 나타나 논란이 일고 있다. 공사비를 줄이려면 모듈러 주택을 대량공급해야 한다. 대량 공급하기 위해서는 고층으로 지을 수 있어야 한다. 하지만 건축법 기준에 맞춰 모듈러 주택을 고층으로 지으려면 콘크리트 건물보다 건축비가 비싸져 모듈러 주택의 효율성을 반감된다.

국토교통부는 건축안전기준을 업계 상황에 맞춰 바꿀수는 없다는 입장이다. 모듈러 공법을 사용하는 업체는 건축법 기준을 통과하면서도 비용을 절감할 수 있는 방법을 찾고 있다.

서울시가 모듈러 공법을 적용해 공릉동에 준공한 공공기숙사 전경 /서울시 제공
 서울시가 모듈러 공법을 적용해 공릉동에 준공한 공공기숙사 전경 /서울시 제공

◆ 비용절감 누리려면 대량공급 필요…건축법 때문에 어려운 대량공급

모듈러 주택은 주택 주요 구조부(기본골조, 마감재, 전기배선, 온돌 등)의 대부분을 공장에서 제작한 뒤 현장에서 조립해 건축물을 완성한다. 이 방법은 기존 콘크리트 구조 방식보다 공사기간이 짧다. 3.3㎡당 평균 건축 비용은 440만원 정도로 소형 주택뿐만 아니라 중·대형 넓이도 공급 가능하다. 방 틀을 미리 만들어 블록 쌓기처럼 건물을 쌓아가며 짓는다. 방위에 다른 방을 올린 후 고장력 볼트로 접합 및 고정시킨다.

건축물 골조는 철강구조물로 기본 틀을 이룬다. 마감재는 외벽과 내벽이 나뉜다. 외벽은 철판으로 마감하고 내벽은 석고 등의 마감재가 쓰인다. 외벽과 내벽 사이에 단열재를 넣는다. 콘크리트는 화재 옮김 방지 및 층간 차음을 위해 바닥에만 쓰인다. 최근 미국과 유럽 지역에서 활용하고 있으며 일본·호주 등도 이 공법을 통해 주택을 공급하고 있다.

포스코A&C의 청담동 외국인 직원 기숙사 뮤토(MUTO) 전경 /포스코A&C 제공
 포스코A&C의 청담동 외국인 직원 기숙사 뮤토(MUTO) 전경 /포스코A&C 제공
모듈러 주택은 국내에서도 서울 등에 공급되고 있다. 지난 17일 서울시는 노원구 공릉동에 공공기숙사를 모듈러 공법을 적용해 준공하고 입주를 시작했다고 밝혔다. 공급 금액은 보증금 100만원에 월 임대료 7만3000~9만원 수준이다. 이 기숙사는 지상4층 연면적 821.5㎡로 총 22실로 구성됐다. 1층은 콘크리트 방식으로 2~4층은 모듈러 방식으로 지어졌다. 포스코A&C는 청담동에 포스코 외국인 직원용 기숙사를 짓기도 했다.

모듈러 주택은 공장생산을 통해 빠르게 자재를 생산하고 현장에서는 조립만 하면되기 때문에 단기간에 대량으로 주택을 공급할 수 있다. 서울시에 따르면 공릉동 기숙사는 모듈러 공법을 적용해 공사기간을 6개월에서 3개월로 단축했다. 규모에 상관없이 콘크리트 건물보다 공사기간을 40~50% 줄일 수 있다.

하지만 모듈러 주택은 현재 상황에서 원가 절감률이 생각보다 크지 않아 대량 공급이 어려운 상황이다. 업계 관계자들은 800~1000실 정도가 한꺼번에 공급됐을 때 콘크리트 구조 건물보다 원가를 최대 20%까지 줄일 수 있다고 분석했다.

노원구 공릉동 기숙사 건축을 담당한 SH공사 관계자는 “시공회사 설명에 따르면 절감률이 10% 정도일 것으로 예상했으나 이에 못 미쳤던 것으로 보인다”고 말했다. 해당 기숙사 건축비(기초 토목 공사 및 기타 비용 제외)는 10억2064만원 가량이었다.

관련 업체는 “기본 철골 구조를 만드는 주형틀을 토지규모 및 건물 설계에 맞게 생산해야 하는데 소규모로 이뤄지면 마진이 크지 않다”며 “현실화 하기 어려운 면이 있다”고 말했다.

고층으로 대량공급이 어려운 이유는 내화구조 기준 때문이다. 내화기준이란 불에대한 내구성을 지닌 자재를 사용하는 것을 말한다. 층수가 4층이고 20m 이하인 건물은 1시간 동안 불이 외부나 상하좌우 다른 공간으로 번지지 않도록 화재에 견딜 수 있어야 한다. 12층이거나 50m 이하인 건물은 2시간, 그 이상은 3시간을 기준으로 한다.

이 기준을 통과하기 위해서는 모듈러 주택 기본 구조에 내화기능을 추가해야 한다. 내화기능을 추가하기 위해서는 내화페인트, 암면(암석을 초고온에서 녹여 섬유처럼 만든 것) 스프레이, 석고보드 등의 내화피복재료를 사용해야 한다. 5층 이상으로 짓기 위해서는 비용을 들여 기본 철골구조에 내화처리를 해야 하는데 이를 적용하면 비용효과가 크게 떨어지는 것이다. 내화피복재료 비용이 비싸기 때문이다.

포스코 A&C관계자는 “5층 이상 건물의 내화기준 및 화재예방 설비기준에 맞춰 건축물을 생산하면 콘크리트 건물 건축비용보다 비싸져 효용성이 떨어지고 공기단축에 따른 비용절감 효과는 낮아진다”고 말했다.

◆ 주거문제 해결위한 키워드인데… “관련법 제·개정은 불가”

모듈러 주택은 최근 주거문제 해결을 위한 방법 중 하나로 떠올랐다. 주택산업연구원은 지난 5일 발표한 ‘청년세대 주거실태 점검 및 지원대책 마련’ 보고서에서 모듈러 주택과 같은 다양한 형태의 주택 공급을 늘려야 한다고 주장했다. 단기간에 공급이 가능하기 때문에 효과적이라는 주장이다.

서울시 관계자는 “공릉동 기숙사와 영등포 고가차도에 지을 주택은 시유지를 사용해 토지비용 문제는 크지 않다”며 “고층으로 지을 수 없어 대규모 토지에 대한 공급은 어려워 보인다”고 말했다.

국토부 관계자는 “내화피복 등으로 내화기능을 강화 하면 건축물 기준을 통과할 수 있으므로 안전 관련 기준을 업계 상황에 맞게 개정하는 것은 불가능하다”고 말했다.

포스코A&C 관계자는 “미국 등에서는 모듈러 공법을 20층짜리 아파트에도 적용하고 있다”며 “대량 공급이 가능하도록 국내 내화기준에 맞추면서도 비용문제를 줄일 3분의 1정도 저렴한 내화성능 자재를 찾고 있는 중”이라고 말했다.

원문보기: 
http://biz.chosun.com/site/data/html_dir/2014/03/18/2014031801685.html#csidx5d282094ac625ef8fe64850496d9df8 

2017년 1월 2일 월요일

콘크리트 균열의 발생원인과 대책

1. 머리말


콘크리트 구조물에 균열이 발생하면 구조적 결함, 내구성 저하, 외관손상 및 철근부식 및 방수성능 저하 등으로 치명적인 손실을 초래할 수 있기 때문에, 설계초기단계부터 콘크리트의 재료선정, 배합설계, 시공 및 구조물 평가에 주의를 기울여야 한다.

특히, 콘크리트 균열발생에 따른 클레임 문제도 많이 제기되고 있기 때문에, 콘크리트의 균열발생 메카니즘을 명확하게 이해하고 각각의 균열발생 원인을 분석하고 이에 따른 방지대책을 검토하여 최대한 억제할 수 있는 방안이 필요하다.
콘크리트의 균열은 설계하중, 외적환경의 원인, 재료특성, 배합조건 및 시공적인 요인에 의하여 많이 발생한다. 실제로 균열은 크게 구조적인 균열(structural crack)과 비구조적 균열(nonstructural crack)의 두 가지로 분류할 수 있다.
구조적인 균열은 구조물이나 구조부재가 사용하중에 대해 구조적으로 지지하지 못할 때 발생하는 균열을 의미한다. 이러한 균열은 설계오류·설계하중을 초과한 외부하중의 작용, 시공불량, 물리적인 손상·폭발·충격, 철근부식으로 인한 성능저하 등에 의해서 발생한다. 따라서, 여기서는 콘크리트의 구조적 균열을 제외한 비구조적 균열에 대하여 각각의 원인 및 대책에 대하여 정리하고자 한다.


2. 균열발생의 메카니즘


콘크리트의 균열발생의 메카니즘은 일반적으로 미세균열(microscopic level)의 측면에서 접근하는 것이 바람직하다. 콘크리트 구조물에 하중이 증가하면 모르타르와 골재의 부착계면에 미세균열이 발생되어 서서히 진전된다. 또한, 하중이 작용되기 전에도 건조수축 과정의 체적변화로 인하여 모르타르와 골재사이의 부착균열이 발생될 수 있다. 콘크리트는 복합재료로 구성되기 때문에 비선형 성질로 인하여 이러한 부착균열이 발생하며, 특히 시멘트-페이스트가 콘크리트의 균열 및 응력-변형곡선을 결정하는 주요 요인이 된다.

이러한 균열발생의 메카니즘을 가장 쉽게 이해할 수 있는 것은 구조물에 작용하는 주응력이 콘크리트의 인장강도를 초과하는 순간에 균열이 발생한다고 보는 것이다. 즉, 콘크리트 구조물에 어떠한 형태의 하중이 작용하더라도 균열은 콘크리트 부재의 인장변형도에 의해서 발생한다.
따라서, 인장응력이 콘크리트의 인장강도를 초과하지 않도록 재료선정, 배합설계, 현장시공 및 품질관리를 하는 것이 중요하다.


3. 균열발생의 원인과 대책


최근에 와서 고강도·고유동·고성능 콘크리트가 개발되고 실용화되면서 콘크리트 분야의 기술이 선진화·합리화되고 있는 것은 주지의 사실이지만, 콘크리트의 균열발생에 대한 문제는 아직도 숙제로 남아있다. 지금까지 현장에서 균열이 발생하면 정확한 원인규명 및 재발방지를 위한 노력이 선행되어야 하는데, 사실은 책임전가 또는 임기웅변적인 대책으로 소홀히 넘어가는 경우가 많았다. 이러한 문제는 콘크리트 산업과 관련된 모든 엔지니어에게 해결해야 할 과제로 남아있다.

이러한 문제를 해결하기 위해서는 먼저 콘크리트의 재료에 대한 이해가 필요하다.
특히, 매스콘크리트·고강도 콘크리트·고유동 콘크리트와 같이 재료적 특성을 먼저 이해해야 하는 구조물들이 많이 건설되고 있기 때문에, 시멘트의 종류·사용량, 배합조건에 대한 최적성, 환경조건(한중 콘크리트 및 서중 콘크리트)에 대한 시공적 측면의 접근이 필요한 실정이다.
두 번째로 콘크리트의 균열이 발생하면 무조건 재료 또는 배합설계의 원인으로 간주하려는 시공자의 마인드가 문제이다. 양질의 콘크리트도 타설·다짐·양생의 불량으로 인하여 균열이 발생하는 경우가 많기 때문에, 면밀한 시공계획과 충분한 다짐, 철저한 양생계획도 콘크리트의 균열을 방지하는 방안이 될 수 있다는 것을 간과해서는 안될 것이다.
여기서는 균열의 원인을 발생시기에 따라 굳지 않은 상태(Fresh condition), 굳은 상태(Hardened condition) 및 설계오류와 시공불량에 따라 분류하고 이에 대한 대책을 정리하기로 한다.

3.1 굳지 않은 콘크리트의 균열

3.1.1 소성수축 균열

⑴ 발생원인

시멘트-페이스트는 경화할 때, 절대체적의 1%정도가 감소하게 된다. 이에 따라 소성상태에 있는 콘크리트의 체적이 감소하게 되는데, 이를 소성수축이라고 하며 콘크리트에 부분적으로 인장력을 유발시키는 원인이 된다. 특히, 타설 후 외기에 접하는 콘크리트 표면으로부터 수분증발과 거푸집 틈사이의 수분손실로 소성수축을 촉진시켜 표면균열을 일으키게 된다. 소성수축에 의한 표면균열은 대기온도, 상대습도, 콘크리트 온도 및 풍속의 영향을 많이 받는다. 즉, 노출된 콘크리트의 표면에
바람이 강할수록, 상대습도가 낮을수록, 대기온도 또는 콘크리트 온도가 높을수록 소성수축 균열이 발생할 확률이 증대된다.
일반적으로 콘크리트 표면의 증발율이 1.0㎏/㎡/hr이상이거나 증발량이 블리딩량 보다 클 때, 표면의 수축현상이 소성(굳지 않은) 상태에 있는 내부의 콘크리트를 구속하게 되기 때문에 콘크리트 표면에 인장응력이 발생하게 되어 표면균열로 이어지게 된다.

⑵ 방지대책

균열의 발생형태는 콘크리트의 표면에서 방향이 불규칙하며, 폭은 경우에 따라 1㎜이상일 경우도 있으며 깊이도 불규칙한 형태로 나타난다. 소성수축 균열을 방지하기 위해서는 타설 초기에 콘크리트가 외부환경(바람, 직사광선)에 직접 노출되지 않도록 하는 것이 중요하며, 표면마감 후에는 표면을 덮어서 보양을 하는 것이 바람직하다. 특히, 양생포를 깔고 Fog Nozzle을 사용하여 습윤양생을 실시하는 것도 소성수축 균열을 방지할 수 있는 방안이 될 수 있다.

3.1.2 소성침하 균열

⑴ 발생원인

콘크리트의 타설·마감작업이 종료된 후에도 콘크리트는 자중에 의하여 계속 압밀되는 경향을 나타낸다. 이러한 소성상태의 콘크리트는 철근이나 거푸집, 골재 등에 의해 국부적으로 제재를 받게 되는데, 이때 철근이나 거푸집, 골재의 하부에 블리딩수가 모이거나 공극이 발생하게 된다. 건조에 따라 이러한 공극은 상부에 인장응력으로 발생하여 균열을 유발시키게 된다.
이러한 균열은 철근의 직경이 클수록, 슬럼프가 커질수록 많이 발생하게 되며, 현장에서 콘크리트를 시공할 때 진동다짐을 충분하게 하지 않았을 경우 또는 변형을 일으키기 쉬운 거푸집 재료를 사용할 경우에도 많이 발생한다.

⑵ 방지대책

균열의 발생형태는 철근 상부의 종방향으로 나타나며, 폭은 1㎜ 이상일 수도 있으나 깊이는 대체로 작다. 소성침하 균열을 방지하기 위해서는 콘크리트의 침하가 완료되는 시간까지 타설간격을 조정하거나 재다짐을 하는 방안이 필요하며, 특히 충분한 다짐과 거푸집 설계에 유의하는 것이 좋다. 또한, 수직부재일 경우에는 가능한 한 1회 콘크리트의 타설높이를 낮추고 충분한 다짐을 실시하도록 해야한다.

3.1.3 수화열에 의한 온도균열

⑴ 발생원인

시멘트와 물이 만나면 수화반응(CaO+H2O→Ca(OH)2)을 하게 되는데, 이때 반응열인 수화열이 발생하게 된다. 특히, 콘크리트는 열전도율이 낮기 때문에 경화되면서 발생하는 수화열이 외부의 노출부위로 발산되는데 많은 시간이 필요하다. 수화열에 의한 균열은 댐, 교량의 하부구조, 도로포장, 옹벽, 원자력 발전소 구조물과 같은 매스콘크리트 구조물에서 발생될 가능성이 높으며, 최근에 많이 건설되는 LNG 저장탱크의 지하연속벽, 본체 구조물 및 건축물의 고층화 추세에 따른 하부의 매트부분에서도 수화열에 의한 균열이 문제시되고 있다.
일반적으로 콘크리트에서 발생한 열이 외부로 발산하는데 필요한 시간은 구조물의 최소치수의 제곱에 비례하며, 동일구조물에서 수화열에 의해 발생한 콘크리트의 온도차가 25∼30℃ 정도에 도달하면 열응력에 의한 온도균열이 발생한다. 특히, 수화열에 의해 발생한 인장응력은 경화후에도 잔류응력으로 남기 때문에, 주변의 콘크리트에 구속조건으로 작용하게 되어 구조물의 균열, 안전성, 내구성 및 방수성에 영향을 미치게 된다.

⑵ 방지대책

수화열에 의한 균열의 발생형태는 대부분 단면을 가로지르는 관통균열로, 두께가 큰 부재에서는 휨균열의 형상을 보이기도 하며 폭은 1㎜이상일 수도 있다. 특히, 균열간격이 일정하게 발생하는 경우가 많다. 수화열에 의한 온도균열을 방지하기 위해서는 콘크리트의 재료선정, 배합조건, 시공 및 양생방법까지 다양한 조건을 검토해야 한다. 먼저, 재료적 측면에서 시멘트 사용량을 줄이거나 발열량이 낮은 시멘트를 사용해야 한다. 발열량이 낮은 저열시멘트(Belite) 또는 플라이애쉬(Fly ash)나 석회석 미분말(Lime stone powder)을 혼화재로 시멘트의 중량비(내할)로 치환하여 사용하는 방안이 매우 효과적이다.
또한, 콘크리트의 온도를 가능한 한 낮추는 방안이 권장되고 있다. 물론, 온도해석을 통해 균열지수가 목표치에 만족하도록 하는 콘크리트의 온도를 정하고 이에 따라 시멘트·골재·물·혼화제의 온도를 낮추도록 한다. 골재는 살수를 하고 직사광선에 노출되지 않도록 하며, 시멘트는 가급적이면 생산 후 온도를 낮추기 위한 보관이 필요하다. 특히, 가장 쉽게 온도를 낮출 수 있고 효과적인 재료가 물이다. 물온도를 낮추기 위해서 얼음을 갈아서 넣는 방법도 효과적이다.
최근에 콘크리트의 온도를 낮추기 위한 특수공법으로 액화질소를 사용하는 경우도 있다. 즉, 모래에 액화질소를 뿜어서 골재의 온도를 낮추거나 레미콘 트럭에 액화질소를 불어넣어 온도를 낮추기도 하는데, 이때 유의할 점은 액화질소로 인한 이상응결에 대해 충분히 실험적으로 확인할 필요가 있다.
마지막으로 콘크리트를 타설한 후에 콘크리트의 표면과 내부의 온도차를 줄이는 방법으로 내부에 냉각파이프를 설치하는 방법이 있으며, 콘크리트가 최고온도에 도달한 후에 서서히 온도가 떨어지게 하는 방법으로 외부를 보온하는 방법이 있다.

3.2 굳은 콘크리트의 균열

3.2.1 건조수축 균열

⑴ 발생원인

콘크리트가 수화반응을 하는데 필요한 수량은 시멘트량의 40%이하로 알려져 있다. 그러나, 일반적으로 사용되는 콘크리트의 물/시멘트비는 45∼60% 정도가 가장 많은 실정이다. 따라서, 워커빌리티에 기여한 잉여수가 건조하면서 콘크리트는 수축을 하게 된다. 시멘트에 물을 첨가하면 수화반응이 일어난 결과로 수산화 칼슘의 결정질이 생성된다. 이러한 결정질은 겔상태(calcium silicate gel)로서 비표면적이 매우 큰 콜로이드의 미세입자이다. 경화된 시멘트-페이스트는 내부공극에 물이 존재하며, 상당량의 수분이 겔에 포함되어 있다.
수축은 이러한 겔에 함유되어 있던 수분이 손실되면서 발생하게 된다. 콘크리트가 건조한 상태로 노출되면 먼저 시멘트-페이스트의 공극수가 증발되며 다음으로 겔 결정구조 사이의 수분이 감소하게 된다. 특히, 겔에 포함된 수분을 소실하게 되면 수축량이 매우 증대하게 된다. 반대로 콘크리트가 수분에 접하면 같은 논리로 콘크리트는 팽창하게 된다.
콘크리트의 건조수축에 의한 체적변화는 보통 다른 구조체에 의해 저지되기 때문에, 이러한 제약으로 인하여 인장응력이 발생하면서 콘크리트에 균열을 일으키게 된다. 건조수축 균열은 기본적으로 두꺼운 부재와 얇은 부재의 건조속도 차이로 발생하는 인장력과 건물 전체의 수축으로 발생하는 인장력의 작용으로 발생하는 경우가 많다.
또한, 골재의 종류, 상대습도, 부재의 크기와 형상, 혼화제 및 시멘트의 종류에 따라 영향을 많이 받기 때문에, 재료선정 및 배합단계에서 충분히 검토되어야 할 것이다.

⑵ 방지대책

콘크리트의 건조수축에 대한 대책으로 적합한 재료선정 및 배합설계, 보강근의 배근 및 시공조인트의 설치, 건조수축을 보상할 수 있는 재료의 사용 등을 들 수 있다.

① 시멘트

시멘트의 경우, 일괄적으로 분류하기는 어렵지만 C3A/SO3의 비가 낮을수록, Na2O 또는 K2O의 함유량이 낮을수록, C4AF의 함유량이 높을수록 건조수축량이 낮은 것으로 알려져 있다. 또한, 시멘트 분말도가 높을수록 콘크리트의 건조수축량이 약간 증대하는 것으로 나타났다. 특히, 콘크리트를 경화초기에 팽창시켜 수축이 보상될 수 있도록 하여 균열을 억제하는 팽창시멘트의 사용도 효과가 있는 것으로 알려져 있다.

② 골재 및 배합수량

골재는 골재크기 및 강도가 클수록, 흡수율이 낮을수록 건조수축을 억제하는데 효과적이다. 그리고 배합설계에 있어서 시공성, 강도, 내구성을 해치지 않는 범위에서 건조수축에 영향을 미치는 배합수량 및 시멘트-페이스트량을 줄이는 방법도 매우 바람직하다. 배합수량과 관련하여 가장 영향을 미치는 요인이 콘크리트의 온도이다.
즉, 동일한 슬럼프 조건에서 콘크리트 온도가 높을수록 배합수량이 증대하기 때문에 콘크리트의 온도를 낮추는 방안도 필요하다.

③ 시공상의 대책

철근배근으로 균열의 량을 줄이고 적절히 균열을 분담시키는 방안이 바람직하다.
이를 통해 큰 균열보다 미세한 균열을 골고루 분포시키게 되므로 구조물의 안전성과 사용성을 확보할 수 있다. 특히, 단면이 얇은 부재의 건조수축은 철근의 효과가 큰 것으로 알려져 있으며, 바닥·슬래브·벽체에 대해서도 최소철근량 및 배근간격을 준수하도록 한다.
또한, 구조물의 길이가 길거나 방향이 변할 경우에는 적절하게 조인트를 설치하여 균열을 방지할 수 있도록 한다. 특히, 슬래브, 보도, 벽체와 같이 비교적 면이 큰 콘크리트는 스스로 균열을 일으켜 조인트를 형성하기 전에 적절하게 조인트를 주는 방안이 매우 효과적이다.

3.2.2 알칼리-골재반응에 의한 균열

⑴ 발생원인

알칼리-골재반응이란 콘크리트의 수산화 알칼리를 주성분으로 하는 세공용액(Na+, K+, OH-)과 반응성 골재(SiO2)가 수분이 공존하는 환경조건에서 장기적으로 서서히 새로운 물질을 생성하는 반응을 말하며, 반응생성물은 수분을 흡수·팽창하여 콘크리트에 균열을 발생시키고 심한 경우에는 콘크리트를 붕괴시키기도 한다.
알칼리-골재반응은 알칼리-실리카 반응(ASR), 알칼리-탄산염 반응 및 알칼리-실리케이트 반응으로 구분되는데, 일반적으로 알칼리-실리카 반응의 피해가 대부분을 차지하기 때문에, 이를 알칼리-골재반응으로 의미한다.
알칼리-골재반응은 반응성 골재가 존재할 것, 세공중에 충분한 수산화 알칼리가 존재할 것, 그리고 다습하거나 습윤상태일 것 등과 같은 조건을 만족해야 발생한다.
반응성 골재로는 화산유리, 오팔, 변형 석영 등이 있으며, 알칼리 공급원으로는 시멘트에 함유된 Na2O, K2O성분과 바닷모래에 부착된 염분(NaCl) 및 콘크리트가 경화한 후에 외부에서 침투하는 염분과 혼화제 성분을 들 수 있다. 피해형태로는 콘크리트를 타설한 후 1∼10년 내에 표면균열로 발생하기 시작하며, 무근일 경우에는 Map Crack 및 Disruptive Crack의 형태로 나타난다.

⑵ 방지대책

① 반응성 골재의 사용금지
② 시멘트의 알칼리량 저감 : Na2O 당량 ≤ 0.6% 또는 저알칼리형 시멘트 사용
③ 콘크리트 1㎥당 총알칼리량 저감 : 0.3㎏/㎥ 이하
④ 고로슬래그 미분말, 플라이애쉬 또는 실리카 흄을 사용하여 Ca(OH)2의 소비에
따른 OH- 농도 감소시키거나 알칼리 이온(Na+, K+) 감소 및 조직의 치밀화에 따른
이온, 수분의 이동을 감소시키는 방안
⑤ 방수성 마감 : 해수, 바닷바람, 수분침투를 방지하기 위한 방안

3.2.3 동결융해에 의한 균열

⑴ 발생원인

콘크리트는 다공질이기 때문에 습기나 수분을 흡수하며, 결빙점 이하의 온도에서는 흡수된 수분이 동결하면서, 수분의 동결팽창(9%)에 따른 정수압으로 콘크리트 조직에 미세한 균열이 발생하게 된다. 또한, 이러한 동결·융해의 반복으로 콘크리트의 내구성이 저하되기 때문에, 사용재료·배합설계 등에 유의하여야 한다.
동결의 진행 및 형태로 먼저 표면의 공극수가 동결되면 체적이 약 9.1% 증대하기 때문에 팽창력이 발생하여 동결부의 주위에 응력상태를 형성하게 된다. 이러한 작용이 내부로 진전되면서 철근부식 및 중성화 촉진 등과 같은 복합적인 내구성의 저하요인이 된다.

⑵ 동결융해의 영향인자

① 물/시멘트비 : 시멘트-페이스트는 Gel 미세공극, 모세관 공극, 공기포로 구성되어 있는데, 모세공극은 500Å으로 물/시멘트비가 클수록 증대되며, 동결융해에 나쁜 영향을 미친다.
② 공기량 : 공기포는 모세공극의 물이 동결될 때, 발생하는 압력을 완화하는 스폰지 역할을 한다. 따라서, 기포간격이 적을수록 압력을 완화시키는 효과가 증대하며, 기포간극 계수가 200μ 이하일 때 저항성이 현저해 진다.
③ 잔골재율(S/a) : 블리딩에 의해 굵은골재 입자의 하부에 형성되는 水膜은 동결융해에 나쁜 영향을 준다. 따라서, 잔골재율이 클수록 동결융해 저항성이 증대한다.

⑶ 동결융해 대책

동경융해에 의란 균열의 발생형태는 종방향 및 국부적인 콘크리트의 파손으로 나타나게 되는데, 이를 방지할 수 있는 방안은 다음과 같다.
① AE제, AE감수제, 고성능 AE감수제 사용 : 적정한 공기량(3∼6%)을 확보할 수 있으며, 이에 따라 응력의 흡수능력이 증대
② 물/시멘트비 저감 : 콘크리트의 매트릭스를 밀실한 조직으로 구성
③ 단위수량 저감 : 동결이 가능한 수분함량을 최소화
④ 균일한 시공 및 양생 철저
⑤ 구조적인 대책 수립 : 균열발생을 억제하기 위하여 표면수의 신속한 배수(물끊기 설치) 및 철근의 피복두께 확보, 철저한 양생·다짐
⑥ Polymer 등으로 표면 덧씌움

3.2.4 염해에 의한 균열

⑴ 발생원인

鹽害란 콘크리트內의 염화물, 또는 염분침해로 콘크리트를 침식시키고, 철근(강재)을 부식시켜 구조물에 손상을 일으키는 현상으로 여기서는 철근부식에 의한 균열을 정리하고자 한다. 철근의 부식은 화학작용 및 전류작용에 의한 부식으로 크게 나눌 수 있다. 일반적으로 철은 자연상태의 철에 전기에너지와 열에너지를 가하여 불안정한 상태에 존재하지만, 물·공기 등과 반응하여 안정된 상태로 되돌아오려는 성질을 나타낸다.
철근콘크리트에서는 철근을 보호하고 있는 피복 콘크리트의 강알칼리(pH 12.5∼13) 성분이 중성화되면서 화학작용을 일으킨다. 외부의 산성물질이 철근과 작용하면서 체적팽창(약 2.6배)으로 균열이 발생하며, 이를 통해 계속적인 수분과 탄산가스(CO2)의 침투로 부식작용이 가속화된다. 또한, 수분을 포함한 콘크리트는 전도체에 가깝기 때문에, 누전 등에 의하여 전류가 흐르면 전기적 화학작용으로 부식을 일으키게 된다.

⑵ 방지대책

철근부식에 의한 균열의 발생형태는 대부분 철근방향과 평행하게 일어나고, 구석부위의 콘크리트가 파손되는 형태를 나타내는데, 이에 대한 대책은 다음과 같다.
① 염분의 제거 : 바닷모래를 사용할 경우, 염화물 함량을 0.04%이하(NaCl로 절건중량), 콘크리트내 Cl-이온을 0.3㎏/㎥이하, 배합수의 염소이온을 200ppm이하(국내 150ppm이하)로 관리한다.
② 염분의 고정화 : 염분과 결합하여 용해도가 매우 낮은 안정한 화합물 생성으로 염분을 제거한다.(예 : 염화물+알미네이트 ⇒ Friedel염 생성 : 난용성)
③ 철근의 표면처리 : 부식에 강한 금속 또는 합성수지 도포 (아연도금)
④ 콘크리트의 밀실화 : 국부전지의 음극반응(½O2+H2O→2(OH)- 억제, 물/시멘트비 감소, 재료선정·배합·운반·타설·다짐·양생관리 철저, AE제·AE감수제·고성능 AE감수제 사용, 블리딩·이상응결·Cold Joint 방지
⑤ 철근의 피복두께 증대 : 외부로부터 산소, 물, 탄산가스의 유입을 차단하여 중성화의 영향 감소
⑥ 방청제 사용 : 금속의 부식속도 저감 (화학장치, 수조, 보일러, 급수기관 등)
⑦ 전기방청법 : 외부전류로 국부전지의 음극전위를 양극의 평균전류까지 분극
(전류차단 ⇒ 부식방지)
⑧ 콘크리트 표면처리 : 표면으로 침입하는 산소, 탄산가스, 수분, 염분 등을 방지할 목적으로 수지계 도장, 타일붙임


3.3 시공불량 및 설계오류에 의한 균열

3.3.1 시공불량에 의한 균열

⑴ 발생원인

최근에는 레미콘 품질에 대한 사회적 관심 및 기술자들의 마인드 향상으로 거의 발생하지 않지만, 콘크리트를 타설하는 현장의 시공과정에서 발생하는 불량요인의 하나로 운반도중에 콘크리트의 슬럼프 로스가 발생하여 현장에서 물을 타는 경우(加水)가 많았다. 물론, 엄격한 관리를 하더라도 레미콘의 청소 또는 펌핑성 등의 이유로 가끔 물을 타는 경우도 있다. 이로 인하여 강도저하, 재료분리, 건조수축 등의 결과를 초래할 수 있기 때문에, 엄격한 품질관리가 요구된다.
또한, 서중 콘크리트의 경우에 현장에서 신속한 양생작업을 실시하지 않거나 한중 콘크리트에서 불충분한 보온양생으로 인하여 균열이 발생하는 경우가 있다. 특히, 콘크리트를 타설하고 응결이 시작된 후에 거푸집의 변형이 발생하여 구조체에 균열을 발생시키는 경우도 있으며, 응결이 진행되고 있는 과정에서 진동이나 충격을 가하게 되어서 균열로 진전되는 경우도 많다.
이 외에도 불충분한 다짐, 동바리 설치의 불량, 응력이 집중되는 곳에 조인트를 설치하는 등의 원인으로 균열이 발생하며, 정리하면 다음과 같다.
① 장시간의 혼합·운반 : 전면에 거미줄 모양 혹은 짧고 불규칙하게 균열발생
② 타설시의 수량증대 : 콘크리트 침하, 블리딩, 건조수축에 기인된 균열발생
③ 철근피복 두께의 감소 : 배근·배관의 표면을 따라 균열발생
④ 급격한 타설 : 콘크리트의 침하, 블리딩, 거푸집의 처짐에 기인된 균열발생
⑤ 불균일한 타설·다짐 : 각종 균열발생
⑥ 거푸집의 처짐 : 거푸집에 움직인 방향에 평행해서 부분적으로 균열발생
⑦ 연속타설면 처리불량 : 연속타설 부위나 콜드조인트 부분 등에 균열발생
⑧ 경화전의 진동·충격 : 외력이 작용할 때와 같음
⑨ 초기양생 불량(급격한 건조) : 타설 직후 표면에 짧고 불규칙적인 균열발생
⑩ 초기양생 불량(초기동결) : 표면에 가늘게 균열발생
⑪ 지보공의 침하 : 바닥이나 기둥 단부의 상부 및 중앙부 하단 등에 균열발생

⑵ 방지대책

최근, 레미콘의 품질관리실 또는 현장의 품질관리팀에서 현장 콘크리트의 타설이 시작되기 전에 레미콘 생산에 사용된 동일 유동화제를 현장의 검사지점에 미리 대기시켜 두는 경우가 많다. 불과 얼마 전까지만 하더라도 현장 감독자 또는 시공자의 마인드가 현장에서 유동화제를 타면 콘크리트에 응결이 지연되거나 재료분리 또는 균열이 발생한다는 것으로 잘못 인식되어 있었으나, 유동화 콘크리트에 대한 이해와 기술보급으로 대부분의 현장에서 유동화제를 첨가하는 방법을 택하고 있다.
그러나, 유동화제를 첨가할 경우에는 첨가량에 대한 실험자료를 근거로 해야하며 가능한 한 0.1%를 초과하지 않도록 해야한다. 따라서, 유동화제를 후첨가하는 방법으로 콘크리트의 품질관리를 하는 방안이 바람직하다.
또한, 외기온(온도, 습도 및 풍속)을 고려하여 양생에 대한 철저한 대비를 하는 것이 요구된다. 일사나 외기에 대한 보호뿐만 아니라 원활한 수화작용을 위해서도 사전에 철저한 양생계획을 세우고, 정확한 시공절차와 품질관리를 준수하는 것이 필요하다.

3.3.2 설계오류에 의한 균열

⑴ 발생원인

콘크리트를 타설할 부재의 특성과 전체 구조체의 구조거동을 충분히 이해하지 못하였을 경우에는 응력이 집중되거나 구조체의 일체성이 결여되어 구조체에 균열이 발생하는 경우가 있으며, 기초의 부동침하, 단면철근의 부족, 과하중 등에 의해서도 구조체에 균열이 발생하는 경우가 많다. 이러한 균열은 타설직후에 발생하는 경우보다 장기간에 걸쳐서 발생하는 경우가 많기 때문에 사전에 지형 및 구조설계의 조건에 대한 면밀한 검토가 필요하다.

⑵ 방지대책

지금까지 현장에서는 도면대로 시공하면 최선을 다하는 것으로 많이 인식하고 있으나, 최근 턴키공사가 활발히 이루어지고 있고 시공분야의 기술력 향상으로 현장조건을 고려한 설계도서의 면밀한 검토가 요구되는 경우가 많다. 따라서, 시공자의 입장에서 설계도면에 대한 정확한 분석과 오류를 확인하고 실제 현장의 조건과 비교하여 개선해 나가는 노력이 필요하다.

3.3.3 사용하중에 의한 균열

⑴ 발생원인

콘크리트를 타설하는 과정에서 부재가 받는 하중이 설계하중보다 클 경우에는 균열이 발생하게 된다. 이러한 현상은 현장에서 콘크리트의 타설초기에 유발하중으로 인하여 부재에 발생하거나 프리캐스트 부재의 운반·설치과정에서 부주의로 인하여 영구적인 균열로 남는 경우도 있다. 또한, 프리텐션 부재의 긴장 완화시에 응력방출로 균열이 발생되는 경우도 있다.
이외에도 증기양생으로 제작되는 콘크리트의 온도구배를 잘못 선정하여 발생하는 열충격에 의한 균열, 두꺼운 프리캐스트 부재의 급격한 냉각에 의한 표면균열, 한중 콘크리트 공사에서 난방기구의 사용에 의한 열응력 균열 등이 시공하중에 따른 균열로 분류할 수 있다.

⑵ 방지대책

현장에서 콘크리트를 타설·양생하는 과정에서 유발하중이 가해지지 않도록 시공계획 및 공사관리에 있어서 철저한 보양 및 규정을 준수하도록 해야 할 것이다. 특히, 프리캐스트를 공장에서 운반하여 현장적치·양중·설치하는 과정에서도 면밀한 시공계획을 세워서 확인하고 수행하는 방안이 필요하다. 프리텐션 부재의 응력도입 및 긴장완화시에도 응력이 집중되거나 편심하중을 받는 경우가 생기지 않도록 사전 검토해야 한다. 따라서, 시공하중에 대한 전반적인 체크리스트를 작성하여 각 공정별로 품질관리를 체계적으로 수행하도록 하고 설계 및 공사과정에 있어서 오류가 발생하지 않도록 해야 할 것이다.

4. 균열 폭의 허용규준 및 보수방법


4.1 균열 폭의 허용규준

콘크리트 구조물에 나타나는 균열의 허용규준을 일괄적으로 정하기는 어렵지만, 일단 균열이 발생할 경우에는 구조적인 안전성을 고려하여 균열이 허용규준에 만족하는지를 먼저 검토하고 보수 또는 보강을 하는 방안을 정해야 할 것이다. 따라서, 표 1에 나타난 바와 같이 현실적으로 콘크리트의 표면에 나타나는 균열 폭을 제한하는 규준을 통해 관리하는 방안이 합리적일 것으로 사료된다.



4.2 균열의 보수방법
균열의 보수는 주로 방수성, 내구성을 회복하기 위한 목적 외에도 구조물의 안전성, 미관성 등을 고려하여 실시하고 있다. 보수의 범위 및 규모는 보수목적을 만족하는 범위내에서 경제성을 고려하여 결정하지만, 구조적인 결함이 있을 경우에는 보강을 병행하여 실시해야 한다.
균열의 상황에 따른 보수공법을 분류하면 다음과 같다. 미세한 균열(0.2㎜)위에 막을 형성시켜 방수성, 내구성을 향상시킬 목적으로 실시하는 공법으로 균열부분만을 피복하는 방법과 전체면을 피복하는 방법이 있다. 이 공법은 균열내부의 처리가 용이하지 않으며 균열이 확산될 경우에 균열의 움직임을 추적하기 어려운 결점이 있다. 사용재료는 일반적으로 도막탄성 방수재, 폴리머 시멘트 페이스트, 충전재 등이 이용된다.



균열에 수지계 또는 시멘트계 재료를 주입하여 방수성, 내구성을 향상시킨 것으로 주입공법의 주류는 에폭시 수지 주입공법이다. 저압·저속의 주입공법은 주입량의 확인이 용이하고 균열내부까지도 주입이 수월한 특징을 지닌다.
0.3㎜이상의 비교적 큰 폭의 균열보수에 적용하며 균열을 따라 콘크리트를 잘라내고 그 부분에 보수재를 충전하는 공법이다. 철근이 부식하지 않은 경우 균열을 따라 약 10㎜폭으로 콘크리트를 U형 또는 V형으로 자른 후에 실링재, 가소성 에폭시 수지 및 폴리머 시멘트 모르타르 등을 충전 보수한다.


5. 맺음말


콘크리트는 매트릭스의 구성재료가 복합재료이고 여러 조건의 영향을 많이 받기 때문에, 균열이 발생하는 것을 당연하게 여기는 경우도 많다. 그러나, 구조물의 중요도·용도 등에 따라서 균열이 발생해서는 안될 경우도 있고 균열이 발생하더라도 허용값을 초과하지 않도록 규정하고 있다.

그러나, 앞에서 정리한 바와 같이 어떠한 형태의 균열도 발생요인이 반드시 있게 마련이고 이에 대한 대책도 복합적이긴 하지만, 정확하게 원인을 분석하면 균열에 의한 구조물의 내구성 문제는 어느 정도 해결할 수 있을 것으로 본다. 최근에 와서 건설인력난의 심화로 현장에서 숙련된 작업자를 구하기 힘든 상황이기 때문에, 경제성이 허용하는 범위에서 콘크리트의 성능을 개선시키는 방법도 균열발생의 억제를 위한 좋은 대책으로 사료된다.
따라서, 작업자에 의해서 발생하는 문제(철근배근의 불량, 피복두께의 미확보, 불충분한 콘크리트의 다짐 등)는 현장에서 철저한 시공품질을 관리하는 방법으로 해결하고, 재료선정의 문제·배합설계·레미콘의 품질관리 등은 기술력의 향상과 철저한 품질관리를 통해서 해결해야 할 것으로 사료된다.
특히, 건설현장에서 자주 발생하는 균열에 대한 클레임 문제도 지금까지 레미콘의 문제로만 간주하려는 마인드를 버리고, 균열이 발생한 원인을 정확하게 분석·평가하여 원인자체를 개선시키는 노력도 필요할 것으로 본다. 콘크리트라는 한가지 자재를 두고 이와 관련된 시멘트·골재·혼화재료·레미콘 공급자 및 시공자 등이 역할과 책임을 명확히 하고 맡은 분야에 최선을 다한다면 콘크리트 기술의 선진화 및 부실공사의 척결은 그리 먼 일은 아닐 것으로 기대된다.
다소 교과서적이고 시험답안과 같은 내용을 정리하긴 하였지만, 가장 중요한 것은 콘크리트 산업에 관련되는 모든 엔지니어들의 관심과 노력이 필요하다는 것을 새삼 느끼면서 이 글을 갈음하고자 한다.

참고문헌

⑴ 金鎭根., "콘크리트 균열의 원인", 한국콘크리트학회 학회지 제6권4호, 1994.8, pp.6∼16
⑵ ACI Committee 224., "Control of cracking in concrete structure", ACI, Detroit,
1989. 42pp.
⑶ 鐵筋コンクリ-ト造のひび割れ對策指針, 日本建築學會, 1990
 내용출처: 콘크리트 균열의 발생원인과 대책 논문중 일부